Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 785
Filter
1.
J Cell Mol Med ; 27(15): 2261-2269, 2023 08.
Article in English | MEDLINE | ID: mdl-37430471

ABSTRACT

Schistosomiasis is a tropical parasitic disease that damages the liver and poses a serious threat to human health. Macrophages play a key role in the development of liver granulomas and fibrosis by undergoing polarization from M1 to M2 type during schistosomiasis. Therefore, regulating macrophage polarization is important for controlling pathological changes that occur during this disease. Triggering receptor expressed on myeloid cells 2 (TREM2) expressed on the surface of macrophages, dendritic cells and other immune cells has been shown to play a role in inhibiting inflammatory responses and regulating M2 macrophage polarization, however its role in macrophage polarization in schistosomiasis has not been investigated. In this study, we confirmed that TREM2 expression was upregulated in the livers and peritoneal macrophages of mice infected with Schistosoma japonicum. Moreover, the TREM2 expression trend correlated with the expression of M2 macrophage polarization-related molecules in the liver tissues of S. japonicum-infected mice. Using Trem2-/- mice, we also showed that Trem2 deletion inhibited Arg1 and Ym1 expression in liver tissues. Trem2 deletion also increased the number of F4/80 + CD86+ cells in peritoneal macrophages of infected mice. In summary, our study suggests that TREM2 may be involved in M2 macrophage polarization during schistosomiasis.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Schistosomiasis , Humans , Animals , Mice , Macrophages, Peritoneal/pathology , Macrophages/metabolism , Liver/metabolism , Schistosomiasis/metabolism , Schistosomiasis/pathology , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
2.
Commun Biol ; 5(1): 1225, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369244

ABSTRACT

Due to the vital roles of macrophages in the pathogenesis of endometriosis, targeting macrophages could be a promising therapeutic direction. Here, we investigated the efficacy of niclosamide for the resolution of a perturbed microenvironment caused by dysregulated macrophages in a mouse model of endometriosis. Single-cell transcriptomic analysis revealed the heterogeneity of macrophages including three intermediate subtypes with sharing characteristics of traditional "small" or "large" peritoneal macrophages (SPMs and LPMs) in the peritoneal cavity. Endometriosis-like lesions (ELL) enhanced the differentiation of recruited macrophages, promoted the replenishment of resident LPMs, and increased the ablation of embryo-derived LPMs, which were stepwise suppressed by niclosamide. In addition, niclosamide restored intercellular communications between macrophages and B cells. Therefore, niclosamide rescued the perturbed microenvironment in endometriosis through its fine regulations on the dynamic progression of macrophages. Validation of similar macrophage pathogenesis in patients will further promote the clinical usage of niclosamide for endometriosis treatment.


Subject(s)
Endometriosis , Mice , Humans , Animals , Female , Endometriosis/drug therapy , Niclosamide/pharmacology , Niclosamide/therapeutic use , Macrophages/pathology , Macrophages, Peritoneal/pathology , Disease Models, Animal
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163089

ABSTRACT

Lipopolysaccharide (LPS)-induced endotoxemia induces an acute systemic inflammatory response that mimics some important features of sepsis, the disease with the highest mortality rate worldwide. In this work, we have analyzed a murine model of endotoxemia based on a single intraperitoneal injection of 5 mg/kg of LPS. We took advantage of galectin-3 (Gal3) knockout mice and found that the absence of Gal3 decreased the mortality rate oflethal endotoxemia in the first 80 h after the administration of LPS, along with a reduction in the tissular damage in several organs measured by electron microscopy. Using flow cytometry, we demonstrated that, in control conditions, peripheral immune cells, especially monocytes, exhibited high levels of Gal3, which were early depleted in response to LPS injection, thus suggesting Gal3 release under endotoxemia conditions. However, serum levels of Gal3 early decreased in response to LPS challenge (1 h), an indication that Gal3 may be extravasated to peripheral organs. Indeed, analysis of Gal3 in peripheral organs revealed a robust up-regulation of Gal3 36 h after LPS injection. Taken together, these results demonstrate the important role that Gal3 could play in the development of systemic inflammation, a well-established feature of sepsis, thus opening new and promising therapeutic options for these harmful conditions.


Subject(s)
Disease Models, Animal , Endotoxemia/pathology , Galectin 3/physiology , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages, Peritoneal/immunology , Animals , Endotoxemia/etiology , Endotoxemia/metabolism , Inflammation/etiology , Inflammation/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
Microvasc Res ; 140: 104276, 2022 03.
Article in English | MEDLINE | ID: mdl-34742813

ABSTRACT

PURPOSE: We previously reported that a calpain inhibitor (CAI) prevents the development of atherosclerosis in rats. This study aimed to investigate the effects of CAI (1 mg/kg) on atherosclerosis in apolipoprotein E knockout (ApoE KO) mice that were fed a high-fat diet (HFD) and explore the underlying mechanism by analyzing the expression of genes related to the uptake and efflux of cholesterol. METHODS: Atherosclerotic plaques were evaluated. The activity of calpain in the aorta and that of superoxide dismutase (SOD) in the serum were assessed. Lipid profiles in the serum and liver were examined. Serum oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) levels were measured. The mRNA expressions of CD68, TNF-α, IL-6, CD36, scavenger receptor (SR-A), peroxisome proliferator-activated receptor gamma (PPAR-γ), liver-x-receptor alpha (LXR-α), and ATP-binding cassette transporter class A1 (ABCA1) in the aorta and peritoneal macrophages were also evaluated. RESULTS: CAI reduced calpain activity in the aorta. CAI also impeded atherosclerotic lesion formation and mRNA expression of CD68 in the aorta and peritoneal macrophages of ApoE KO mice compared with those of mice receiving HFD. However, CAI had no effect on body weight and lipid levels in both the serum and liver. CAI significantly decreased MDA, oxLDL, TNF-α, and IL-6 levels and increased SOD activity in the serum. Moreover, CAI significantly inhibited the mRNA expression of TNF-α and IL-6 genes in the aorta and peritoneal macrophages. In addition, CAI significantly downregulated the mRNA expression of scavenger receptors CD36 and SR-A and upregulated the expression of genes involved in the cholesterol efflux pathway, i.e., PPAR-γ, LXR-α, and ABCA1 in the aorta and peritoneal macrophages. CONCLUSIONS: CAI inhibited the development of atherosclerotic lesions in ApoE KO mice, and this effect might be related to the reduction of oxidative stress and inflammation and the improvement of cholesterol intake and efflux pathways.


Subject(s)
Aorta/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Calpain/antagonists & inhibitors , Cholesterol/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Leupeptins/pharmacology , Lipid Metabolism/drug effects , Macrophages, Peritoneal/drug effects , RNA, Messenger/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Aorta/enzymology , Aorta/pathology , Aortic Diseases/enzymology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Calpain/metabolism , Disease Models, Animal , Gene Expression Regulation , Lipid Metabolism/genetics , Liver X Receptors/genetics , Liver X Receptors/metabolism , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , PPAR gamma/genetics , PPAR gamma/metabolism , Plaque, Atherosclerotic , RNA, Messenger/genetics , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolism
5.
Biochem Biophys Res Commun ; 589: 260-266, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34929449

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a critical illness syndrome characterized by dysregulated pulmonary inflammation. Currently, effective pharmacological treatments for ARDS are unavailable. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHS-R1a), has a pivotal role in regulating energy metabolism and immunomodulation. The role of endogenous ghrelin in ARDS remains unresolved. Herein, we investigated the role of endogenous ghrelin signaling by using GHS-R1a-null (ghsr-/-) mice and lipopolysaccharide (LPS)-induced ARDS model. Ghsr-/- mice survived longer than controls after LPS-induced lung injury. Ghsr-/- mice showed lower levels of pro-inflammatory cytokines and higher oxygenation levels after lung injury. The peritoneal macrophages isolated from ghsr-/- mice exhibited lower levels of cytokines production and oxygen consumption rate after LPS stimulation. Our results indicated that endogenous ghrelin plays a pivotal role in initiation and continuation in acute inflammatory response in LPS-induced ARDS model by modulating macrophage activity, and highlighted endogenous GHS-R1a signaling in macrophage as a potential therapeutic target in this relentless disease.


Subject(s)
Down-Regulation , Lung Injury/pathology , Macrophages, Peritoneal/pathology , Receptors, Ghrelin/deficiency , Animals , Cell Respiration , Cytokines/genetics , Cytokines/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides , Lung Injury/complications , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , NF-kappa B/metabolism , Pneumonia/complications , Pneumonia/pathology , Pulmonary Alveoli/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Ghrelin/metabolism
6.
Immunohorizons ; 5(12): 994-1007, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34965966

ABSTRACT

Monocytes and macrophages are early sentinels of infection. The peritoneum contains two resident populations: large and small peritoneal macrophages (LPMs and SPMs). While LPMs self-renew, circulating monocytes enter the peritoneum and differentiate into SPMs. We lack information on the dynamics of monocyte-macrophage trafficking during abdominal sepsis, reflecting an important knowledge gap. In this study, we characterize the presence of LPMs, SPMs, and monocytes in the peritoneum of mice following cecal ligation and puncture (CLP)-induced sepsis and sham surgery. LPMs rapidly disappeared from the peritoneum and were scarce at 18-66 h after CLP or sham surgery. By 14 d, LPMs returned for sham mice, but they remained scarce in CLP mice. Depletion of LPMs from the peritoneum of CD11b-DTR mice greatly increased animal mortality. These data imply that LPMs are critical for sepsis survival. Monocytes rapidly infiltrated the peritoneum and were abundant at 18-66 h after CLP or sham surgery. Surprisingly, SPMs only increased at 14 d post-CLP. Therefore, monocytes may defend hosts from acute sepsis mortality without generating SPMs. More monocytes were present in mice predicted to survive sepsis versus mice predicted to die. However, altering monocyte numbers via CCR2 deficiency or adoptive transfer did not significantly affect animal survival. We reasoned that animals destined to survive sepsis may exhibit a different monocyte phenotype, rather than merely enhanced numbers. Indeed, mice predicted to survive possessed more CD31+, CXCR4hi transitional premonocytes in their abdomen. Inhibition of CXCL12-CXCR4 signaling via AMD3100 exacerbated sepsis. These data imply that recruitment of transitional premonocytes to the abdomen promotes sepsis survival.


Subject(s)
Macrophages, Peritoneal/pathology , Sepsis/mortality , Sepsis/pathology , Animals , Benzylamines/pharmacology , Chemokine CXCL12/drug effects , Cyclams/pharmacology , Disease Models, Animal , Female , Ligation , Macrophages/metabolism , Macrophages, Peritoneal/immunology , Male , Mice , Monocytes/metabolism , Receptors, CXCR4/drug effects , Sepsis/drug therapy , Sepsis/immunology
7.
Sci Rep ; 11(1): 24380, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934125

ABSTRACT

The Na+/H+ exchanger isoform 1 (NHE-1) attracts ongoing attention as a validated drug target for the management of cardiovascular and ocular diseases owing to cytoprotective, anti-ischemic and anti-inflammatory properties of NHE-1 inhibitors. Herein we report novel NHE-1 inhibitors realized via functionalization of N1-alkyl quinazoline-2,4(1H,3H)-dione and quinazoline-4(3H)-one with N-acylguanidine or 3-acyl(5-amino-1,2,4-triazole) side chain. Lead compounds show activity in a nanomolar range. Their pharmacophoric features were elucidated with neural network modeling. Several compounds combine NHE-1 inhibition with antiplatelet activity. Compound 6b reduces intraocular pressure in rats and effectively inhibits the formation of glycated proteins. Compounds 3e and 3i inhibit pro-inflammatory activation of murine macrophages, LPS-induced interleukin-6 secretion and also exhibit antidepressant activity similar to amiloride. Hence, novel compounds represent an interesting starting point for the development of agents against cardiovascular diseases, thrombotic events, excessive inflammation, long-term diabetic complications and glaucoma.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Inflammation/drug therapy , Macrophages, Peritoneal/drug effects , Quinazolines/chemistry , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Animals , Antidepressive Agents/chemical synthesis , Female , Inflammation/immunology , Inflammation/pathology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Rats
8.
Bull Exp Biol Med ; 171(5): 656-660, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34617184

ABSTRACT

We studied the effects of M. tuberculosis secretory proteins ESAT-6 and CFP-10 on the properties of vaccinal mycobacteria BCG not producing these proteins. Phagocytosis of M. bovis by macrophages, proliferation of mycobacteria in macrophages, apoptosis and necrosis of macrophages, and the production of reactive oxygen and nitrogen species were studied. It was shown that both ESAT-6 and CFP-10 significantly increased the number of phagocytized mycobacteria by increasing the number of phagocytic-active macrophages and augment the intracellular proliferation of the pathogen. At the same time, macrophages preincubated with ESAT-6 and CFP-10 reduce the production of reactive oxygen and nitrogen species and are more susceptible to apoptosis and necrosis in the presence of mycobacteria. In summary, these proteins suppress macrophage-mediated mechanisms of anti-tuberculosis resistance and impart pronounced pathogenic properties to non-pathogenic mycobacteria that do not secrete ESAT-6 and CFP-10.


Subject(s)
Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Granuloma/pathology , Macrophages, Peritoneal/drug effects , Animals , Cells, Cultured , Granuloma/microbiology , Macrophages, Peritoneal/pathology , Mice , Mice, Inbred BALB C , Models, Biological , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/pathology
9.
Arterioscler Thromb Vasc Biol ; 41(11): 2740-2755, 2021 11.
Article in English | MEDLINE | ID: mdl-34615372

ABSTRACT

Objective: MR (mineralocorticoid receptor) activation associates with increased risk of cardiovascular ischemia while MR inhibition reduces cardiovascular-related mortality and plaque inflammation in mouse atherosclerosis. MR in myeloid cells (My-MR) promotes inflammatory cell infiltration into injured tissues and atherosclerotic plaque inflammation by unclear mechanisms. Here, we examined the role of My-MR in leukocyte trafficking and the impact of sex. Approach and Results: We confirm in vivo that My-MR deletion (My-MR-KO) in ApoE-KO mice decreased plaque size. Flow cytometry revealed fewer plaque macrophages with My-MR-KO. By intravital microscopy, My-MR-KO significantly attenuated monocyte slow-rolling and adhesion to mesenteric vessels and decreased peritoneal infiltration of myeloid cells in response to inflammatory stimuli in male but not female mice. My-MR-KO mice had significantly less PSGL1 (P-selectin glycoprotein ligand 1) mRNA in peritoneal macrophages and surface PSGL1 protein on circulating monocytes in males. In vitro, MR activation with aldosterone significantly increased PSGL1 mRNA only in monocytes from MR-intact males. Similarly, aldosterone induced, and MR antagonist spironolactone inhibited, PSGL1 expression in human U937 monocytes. Mechanistically, aldosterone stimulated MR binding to a predicted MR response element in intron-1 of the PSGL1 gene by ChIP-qPCR. Reporter assays demonstrated that this PSGL1 MR response element is necessary and sufficient for aldosterone-activated, MR-dependent transcriptional activity. Conclusions: These data identify PSGL1 as a My-MR target gene that drives leukocyte trafficking to enhance atherosclerotic plaque inflammation. These novel and sexually dimorphic findings provide insight into increased ischemia risk with MR activation, cardiovascular protection in women, and the role of MR in atherosclerosis and tissue inflammation.


Subject(s)
Aorta, Thoracic/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , Cell Adhesion , Leukocyte Rolling , Macrophages, Peritoneal/metabolism , Membrane Glycoproteins/metabolism , Monocytes/metabolism , Receptors, Mineralocorticoid/metabolism , Adult , Animals , Aorta, Thoracic/pathology , Aortic Diseases/genetics , Aortic Diseases/pathology , Aortic Diseases/prevention & control , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cell Adhesion/drug effects , Disease Models, Animal , Female , HEK293 Cells , Humans , Hypoglycemia/drug therapy , Hypoglycemia/genetics , Hypoglycemia/metabolism , Leukocyte Rolling/drug effects , Macrophages, Peritoneal/pathology , Male , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Mineralocorticoid Receptor Antagonists/therapeutic use , Monocytes/drug effects , Monocytes/pathology , Randomized Controlled Trials as Topic , Receptors, Mineralocorticoid/drug effects , Receptors, Mineralocorticoid/genetics , Sex Factors , Signal Transduction , Spironolactone/therapeutic use , Transcription, Genetic , Transendothelial and Transepithelial Migration , Treatment Outcome , U937 Cells , Young Adult
10.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639133

ABSTRACT

Endometriosis is an estrogen-dependent gynecological disorder, defined as the growth of endometrial stromal cells and glands at extrauterine sites. Endometriotic lesions are more frequently located into the abdominal cavity, although they can also be implanted in distant places. Among its etiological factors, the presence of immune dysregulation occupies a prominent place, pointing out the beneficial and harmful outcomes of macrophages in the pathogenesis of this disease. Macrophages are tissue-resident cells that connect innate and adaptive immunity, playing a key role in maintaining local homeostasis in healthy conditions and being critical in the development and sustainment of many inflammatory diseases. Macrophages accumulate in the peritoneal cavity of women with endometriosis, but their ability to clear migrated endometrial fragments seems to be inefficient. Hence, the characteristics of the peritoneal immune system in endometriosis must be further studied to facilitate the search for new diagnostic and therapeutic tools. In this review, we summarize recent relevant advances obtained in both mouse, as the main animal model used to study endometriosis, and human, focusing on peritoneal macrophages obtained from endometriotic patients and healthy donors, under the perspective of its future clinical translation to the role that these cells play on this pathology.


Subject(s)
Endometriosis/pathology , Macrophages, Peritoneal/pathology , Stromal Cells/pathology , Animals , Endometriosis/etiology , Female , Humans
11.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34714329

ABSTRACT

Two resident macrophage subsets reside in peritoneal fluid. Macrophages also reside within mesothelial membranes lining the peritoneal cavity, but they remain poorly characterized. Here, we identified two macrophage populations (LYVE1hi MHC IIlo-hi CX3CR1gfplo/- and LYVE1lo/- MHC IIhi CX3CR1gfphi subsets) in the mesenteric and parietal mesothelial linings of the peritoneum. These macrophages resembled LYVE1+ macrophages within surface membranes of numerous organs. Fate-mapping approaches and analysis of newborn mice showed that LYVE1hi macrophages predominantly originated from embryonic-derived progenitors and were controlled by CSF1 made by Wt1+ stromal cells. Their gene expression profile closely overlapped with ovarian tumor-associated macrophages previously described in the omentum. Indeed, syngeneic epithelial ovarian tumor growth was strongly reduced following in vivo ablation of LYVE1hi macrophages, including in mice that received omentectomy to dissociate the role from omental macrophages. These data reveal that the peritoneal compartment contains at least four resident macrophage populations and that LYVE1hi mesothelial macrophages drive tumor growth independently of the omentum.


Subject(s)
Macrophages, Peritoneal/pathology , Omentum/cytology , Ovarian Neoplasms/pathology , Vesicular Transport Proteins/metabolism , Animals , Epithelial Cells/pathology , Female , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Omentum/pathology , Omentum/surgery , Peritoneum/pathology , Stromal Cells/metabolism , Transcriptome , Vesicular Transport Proteins/genetics , WT1 Proteins/genetics , WT1 Proteins/metabolism
12.
Front Immunol ; 12: 688257, 2021.
Article in English | MEDLINE | ID: mdl-34497601

ABSTRACT

We present a stochastic mathematical model of the intracellular infection dynamics of Bacillus anthracis in macrophages. Following inhalation of B. anthracis spores, these are ingested by alveolar phagocytes. Ingested spores then begin to germinate and divide intracellularly. This can lead to the eventual death of the host cell and the extracellular release of bacterial progeny. Some macrophages successfully eliminate the intracellular bacteria and will recover. Here, a stochastic birth-and-death process with catastrophe is proposed, which includes the mechanism of spore germination and maturation of B. anthracis. The resulting model is used to explore the potential for heterogeneity in the spore germination rate, with the consideration of two extreme cases for the rate distribution: continuous Gaussian and discrete Bernoulli. We make use of approximate Bayesian computation to calibrate our model using experimental measurements from in vitro infection of murine peritoneal macrophages with spores of the Sterne 34F2 strain of B. anthracis. The calibrated stochastic model allows us to compute the probability of rupture, mean time to rupture, and rupture size distribution, of a macrophage that has been infected with one spore. We also obtain the mean spore and bacterial loads over time for a population of cells, each assumed to be initially infected with a single spore. Our results support the existence of significant heterogeneity in the germination rate, with a subset of spores expected to germinate much later than the majority. Furthermore, in agreement with experimental evidence, our results suggest that most of the spores taken up by macrophages are likely to be eliminated by the host cell, but a few germinated spores may survive phagocytosis and lead to the death of the infected cell. Finally, we discuss how this stochastic modelling approach, together with dose-response data, allows us to quantify and predict individual infection risk following exposure.


Subject(s)
Anthrax/microbiology , Bacillus anthracis/pathogenicity , Macrophages, Peritoneal/microbiology , Models, Biological , Spores, Bacterial/pathogenicity , Animals , Anthrax/immunology , Anthrax/pathology , Bacillus anthracis/growth & development , Bacillus anthracis/immunology , Bayes Theorem , Cell Death , Computer Simulation , Disease Models, Animal , Host-Pathogen Interactions , Inhalation Exposure , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Mice , Microbial Viability , Phagocytosis , Population Density , Spores, Bacterial/growth & development , Spores, Bacterial/immunology , Stochastic Processes , Time Factors
13.
Biomed Pharmacother ; 138: 111543, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34311538

ABSTRACT

Acute lung injury (ALI) is a severe lung disease with limited therapeutic strategies. Munronoid I, a limonoid, which is extracted and purified from Munronia sinica, exhibits effective anti-neoplastic activities. In this study, we attempted to determine the anti-inflammatory effects of Munronoid I using both the lipopolysaccharide (LPS)-induced in vivo murine ALI models and in vitro assays. Our results demonstrated that Munronoid I treatment ameliorated LPS-induced ALI and inflammation in mice. Moreover, it also significantly inhibited LPS-induced pathological injuries, infiltration of inflammatory cells, and production of IL-1ß and IL-6. Furthermore, the in vitro assay showed that Munronoid I could inhibit the LPS-induced expression of inflammatory mediators such as iNOS, COX2, and production of pro-inflammatory cytokines by suppressing the activation of NF-κB signaling pathway in mouse peritoneal macrophages. Munronoid I reduced the LPS-, tumor necrosis factor alpha (TNF-α)- or interleukin 1 beta (IL-1ß)-induced transforming growth factor beta-activated kinase 1 (TAK1) phosphorylation and protein expression. Furthermore, the Munronoid I also promoted K48-linked ubiquitination and proteasomal degradation of TAK1. Taken together, these results demonstrated that Munronoid I exhibited anti-inflammatory activities both in vitro and in vivo, which might be a potential therapeutic candidate for the treatment of ALI and pulmonary inflammation.


Subject(s)
Acute Lung Injury/prevention & control , Anti-Inflammatory Agents/pharmacology , Limonins/pharmacology , Lung/drug effects , MAP Kinase Kinase Kinases/metabolism , Macrophages, Peritoneal/drug effects , Proteasome Endopeptidase Complex/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/enzymology , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Inflammation Mediators/metabolism , Limonins/isolation & purification , Lipopolysaccharides , Lung/enzymology , Lung/pathology , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/pathology , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Proteolysis , Ubiquitination
14.
Cells ; 10(5)2021 05 13.
Article in English | MEDLINE | ID: mdl-34068205

ABSTRACT

A central characterization of retinal immunobiology is the prevention of proinflammatory activity by macrophages. The retinal pigment epithelial cells (RPEs) are a major source of soluble anti-inflammatory factors. This includes a soluble factor that induces macrophage apoptosis when the activity of the immunomodulating neuropeptide alpha-melanocyte-stimulating hormone (α-MSH) is neutralized. In this manuscript, isolated extracellular soluble membranes (ESMs) from primary RPE were assayed to see if they could be the soluble mediator of apoptosis. Our results demonstrated that RPE ESMs mediated the induction of macrophage apoptosis that was suppressed by α-MSH. In contrast, the RPE line ARPE-19, cultured under conditions that induce similar anti-inflammatory activity to primary RPEs, did not activate apoptosis in the macrophages. Moreover, only the ESMs from primary RPE cultures, and not those from the ARPE-19 cell cultures, expressed mFasL. The results demonstrate that RPE ESMs are a soluble mediator of apoptosis and that this may be a mechanism by which the RPEs select for the survival of α-MSH-induced suppressor cells.


Subject(s)
Apoptosis , Autoimmune Diseases/metabolism , Extracellular Vesicles/metabolism , Macrophages, Peritoneal/metabolism , Retinal Pigment Epithelium/metabolism , Uveitis/metabolism , Animals , Apoptosis/drug effects , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Disease Models, Animal , Extracellular Vesicles/immunology , Fas Ligand Protein/metabolism , Humans , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Mice , Mice, Inbred C57BL , Paracrine Communication , Primary Cell Culture , RAW 264.7 Cells , Retinal Pigment Epithelium/immunology , Retinal Pigment Epithelium/pathology , Signal Transduction , Solubility , Uveitis/immunology , Uveitis/pathology , alpha-MSH/pharmacology
15.
Theranostics ; 11(13): 6225-6239, 2021.
Article in English | MEDLINE | ID: mdl-33995655

ABSTRACT

Colitis-associated colorectal cancer (CAC) develops from chronic intestinal inflammation. Dihydroartemisinin (DHA) is an antimalarial drug exhibiting anti-inflammatory and anti-tumor effects. Nonetheless, the therapeutic effects of DHA on CAC remain unestablished. Methods: Mice were challenged with azoxymethane (AOM) and dextran sulfate sodium (DSS) to establish CAC models. DHA was administered via oral gavage in different stages of CAC models. Colon and tumor tissues were obtained from the AOM/DSS models to investigate inflammatory responses and tumor development. Inflammatory cytokines in the murine models were detected through qRT-PCR and ELISA. Toll-like receptor 4 (TLR4) signaling-related proteins were detected by western blot. Macrophage infiltration was measured using immunostaining analysis, and apoptosis in the colon cancer cells was detected by flow cytometry and western blot. Results: DHA inhibited inflammatory responses in the early stage of the AOM/DSS model and subsequent tumor formation. In the early stage, DHA reversed macrophage infiltration in colon mucosa and decreased the expression of pro-inflammatory cytokines. DHA inhibited the activation of macrophage by suppressing the TLR4 signal pathway. In the late stage of CAC, DHA inhibited tumor growth by enhancing cell cycle arrest and apoptosis in tumor cells. Administration of DHA during the whole period of the AOM/DSS model generated an addictive effect based on the inhibition of inflammation and tumor growth, thereby improving the therapeutic effect of DHA on CAC. Conclusion: Our study indicated that DHA could be a potent agent in managing the initiation and development of CAC without obvious side effects, warranting further clinical translation of DHA for CAC treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Artemisinins/therapeutic use , Colitis-Associated Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Artemisinins/pharmacology , Cell Line, Tumor , Colitis/chemically induced , Colitis/pathology , Cytokines/analysis , Drug Screening Assays, Antitumor , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Proteins/analysis , Neoplasm Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Toll-Like Receptor 4/analysis , Toll-Like Receptor 4/antagonists & inhibitors
16.
FASEB J ; 35(5): e21584, 2021 05.
Article in English | MEDLINE | ID: mdl-33860549

ABSTRACT

Endometriosis, a common gynecological disease, causes chronic pelvic pain and infertility in women of reproductive age. Due to the limited efficacy of current therapies, a critical need exists to develop new treatments for endometriosis. Inflammatory dysfunction, instigated by abnormal macrophage (MΦ) function, contributes to disease development and progression. However, the fundamental role of the heterogeneous population of peritoneal MΦ and their potential druggable functions is uncertain. Here we report that GATA6-expressing large peritoneal MΦ (LPM) were increased in the peritoneal cavity following lesion induction. This was associated with increased cytokine and chemokine secretion in the peritoneal fluid (PF), as well as MΦ infiltration, vascularization and innervation in endometriosis-like lesions (ELL). Niclosamide, an FDA-approved anti-helminthic drug, was effective in reducing LPM number, but not small peritoneal MΦ (SPM), in the PF. Niclosamide also inhibits aberrant inflammation in the PF, ELL, pelvic organs (uterus and vagina) and dorsal root ganglion (DRG), as well as MΦ infiltration, vascularization and innervation in the ELL. PF from ELL mice stimulated DRG outgrowth in vitro, whereas the PF from niclosamide-treated ELL mice lacked the strong stimulatory nerve growth response. These results suggest LPM induce aberrant inflammation in endometriosis promoting lesion progression and establishment of the inflammatory environment that sensitizes peripheral nociceptors in the lesions and other pelvic organs, leading to increased hyperalgesia. Our findings provide the rationale for targeting LPM and their functions with niclosamide and its efficacy in endometriosis as a new non-hormonal therapy to reduce aberrant inflammation which may ultimately diminish associated pain.


Subject(s)
Anticestodal Agents/pharmacology , Endometriosis/complications , GATA6 Transcription Factor/metabolism , Ganglia, Spinal/drug effects , Inflammation/drug therapy , Macrophages, Peritoneal/drug effects , Niclosamide/pharmacology , Animals , Female , GATA6 Transcription Factor/genetics , Ganglia, Spinal/pathology , Inflammation/etiology , Inflammation/pathology , Macrophages, Peritoneal/pathology , Mice , Mice, Inbred C57BL
17.
Biomed Pharmacother ; 139: 111574, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33862495

ABSTRACT

The presistent increase of 12/15 lipoxygenase enzyme activity is correlated with uncontrolled inflammation, leading to organ dysfunction. ML351, a potent 12/15 lipoxygenase (12/15LOX) inhibitor, was reported to reduce infarct size and inflammation in a murine ischemic stroke model. In the presented work, we have applied three complementary experimental approaches, in-vitro, ex-vivo, and in-vivo, to determine whether pharmacological inhibition of 12/15LOX could dampen the inflammatory response in adult mice after Kdo2-Lipid A (KLA) as an endotoxin stimulator or post myocardial infarction (MI). Male C57BL/6 (8-12 weeks) mice were subjected to permanent coronary ligation thereby inducing acute heart failure (MI-d1 and MI-d5) for in-vivo studies. 12/15LOX antagonist ML351 (50 mg/kg) was subcutaneously injected 2 h post-MI, while MI-controls received saline. For ex-vivo experiments, ML351 (25 mg/kg) was injected as bolus after 5 min of inflammatory stimulus (KLA 1 µg/g) injection. Peritoneal macrophages (PMɸ) were harvested after 4 h post KLA. For in-vitro studies, PMɸ were treated with KLA (100 ng/mL), ML351 (10 µM), or KLA + ML351 for 4 h, and inflammatory response was evaluated. In-vivo, 5LOX expression was reduced after ML351 administration, inducing a compensatory increase of 12LOX that sensitized PMɸ toward a proinflammatory state. This was marked by higher inflammatory cytokines and dysregulation of the splenocardiac axis post-MI. ML351 treatment increased CD11b+ and Ly6Chigh populations in spleen and Ly6G+ population in heart, with a decrease in F4/80+ macrophage population at MI-d1. In-vitro results indicated that ML351 suppressed initiation of inflammation while ex-vivo results suggested ML351 overactivated inflammation consequently delaying the resolution process. Collectively, in-vitro, ex-vivo, and in-vivo results indicated that pharmacological blockade of lipoxygenases using ML351 impaired initiation of inflammation thereby dysregulated acute immune response in cardiac repair.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Heart Failure/drug therapy , Isoxazoles/pharmacology , Isoxazoles/therapeutic use , Lipoxygenase Inhibitors/pharmacology , Naphthalenes/pharmacology , Naphthalenes/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonate 12-Lipoxygenase , Arachidonate 15-Lipoxygenase , Arachidonate 5-Lipoxygenase/metabolism , Echocardiography , Heart Failure/physiopathology , Immunity, Innate , Inflammation/pathology , Lipoxygenase Inhibitors/therapeutic use , Macrophage Activation/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/chemically induced , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology
18.
Biochem Biophys Res Commun ; 555: 74-80, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33813279

ABSTRACT

The engagement of the receptor for advanced glycation end-products (receptor for AGEs, RAGE) with diverse ligands could elicit chronic vascular inflammation, such as atherosclerosis. Binding of cytoplasmic tail RAGE (ctRAGE) to diaphanous-related formin 1 (Diaph1) is known to yield RAGE intracellular signal transduction and subsequent cellular responses. However, the effectiveness of an inhibitor of the ctRAGE/Diaph1 interaction in attenuating the development of atherosclerosis is unclear. In this study, using macrophages from Ager+/+ and Ager-/- mice, we validated the effects of an inhibitor on AGEs-RAGE-induced foam cell formation. The inhibitor significantly suppressed AGEs-RAGE-evoked Rac1 activity, cell invasion, and uptake of oxidized low-density lipoprotein, as well as AGEs-induced NF-κB activation and upregulation of proinflammatory gene expression. Moreover, expression of Il-10, an anti-inflammatory gene, was restored by this antagonist. These findings suggest that the RAGE-Diaph1 inhibitor could be a potential therapeutic drug against RAGE-related diseases, such as chronic inflammation and atherosclerosis.


Subject(s)
Foam Cells/metabolism , Macrophages, Peritoneal/pathology , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Receptor for Advanced Glycation End Products/metabolism , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Gene Expression , Inflammation/genetics , Inflammation/pathology , Lipoproteins, LDL/metabolism , Macrophages, Peritoneal/metabolism , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Neuropeptides/metabolism , Phosphorylation/drug effects , Rats , Receptor for Advanced Glycation End Products/genetics , Signal Transduction/drug effects , rac1 GTP-Binding Protein/metabolism
19.
Inflammopharmacology ; 29(2): 513-524, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33725283

ABSTRACT

The present paper sought to investigate the in vitro and in vivo anti-inflammatory effects of the methanolic extract (ME), hexane-ethyl acetate fraction E (FE) found in Chrysophyllum cainito fruits (CCF), as well the lupeol acetate (LA) obtained from FE on lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. The macrophages were treated with ME, FE or LA at various concentrations and the viability of cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method. Production of pro-inflammatory (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-10) cytokines, as well as the nitric oxide (NO) and hydrogen peroxide (H2O2) levels was determined using macrophages treated with ME, FE or LA at various concentrations and stimulated with LPS as an in vitro model. Afterwards, we evaluated the anti-inflammatory effects in vivo using the TPA-induced ear edema and carrageenan-induced paw edema tests in mice and production of inflammatory mediators was estimated in serum samples. The results showed that the ME, FE and LA from fruits, FE and LA were able to trigger an inhibition in NO and H2O2 levels, as well as IL-1ß, IL-6, and TNF-α released by macrophages in a concentration-dependent manner. LA from C. cainito fruits was found to significantly attenuate carrageenan-induced paw edema and TPA-induced ear edema. Therefore, the results suggest ME, FE and LA isolated from C. cainito fruits have anti-inflammatory effects on macrophages without affecting cell viability.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Plant Extracts/pharmacology , Sapotaceae/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Carrageenan , Cell Survival/drug effects , Dose-Response Relationship, Drug , Edema/drug therapy , Fruit , Inflammation/pathology , Lipopolysaccharides , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred BALB C , Plant Extracts/administration & dosage
20.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33536334

ABSTRACT

Macrophages are intimately involved in the pathophysiology of endometriosis, a chronic inflammatory disorder characterized by the growth of endometrial-like tissue (lesions) outside the uterus. By combining genetic and pharmacological monocyte and macrophage depletion strategies we determined the ontogeny and function of macrophages in a mouse model of induced endometriosis. We demonstrate that lesion-resident macrophages are derived from eutopic endometrial tissue, infiltrating large peritoneal macrophages (LpM) and monocytes. Furthermore, we found endometriosis to trigger continuous recruitment of monocytes and expansion of CCR2+ LpM. Depletion of eutopic endometrial macrophages results in smaller endometriosis lesions, whereas constitutive inhibition of monocyte recruitment significantly reduces peritoneal macrophage populations and increases the number of lesions. Reprogramming the ontogeny of peritoneal macrophages such that embryo-derived LpM are replaced by monocyte-derived LpM decreases the number of lesions that develop. We propose a putative model whereby endometrial macrophages are "proendometriosis" while newly recruited monocyte-derived macrophages, possibly in LpM form, are "antiendometriosis." These observations highlight the importance of monocyte-derived macrophages in limiting disease progression.


Subject(s)
Endometriosis/pathology , Macrophages, Peritoneal/pathology , Animals , Antibodies, Monoclonal/metabolism , Chemokine CCL2/deficiency , Chemokine CCL2/metabolism , Endometrium/pathology , Female , Mice, Inbred C57BL , Models, Biological , Monocytes/pathology , Peritoneal Cavity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...